| DISCIPLINE | | SEMESTER NAME OF THE TEACHING TAXABLE | | | | | |-------------------------------|------|---|---|---|--|--| | ELECTRICAL | | NAME OF THE TEACHING FACULTY 4TH | | | | | | Free | | | MISS.SINDHUJA PANI | GRAHI(PTGF) | | | | SUBJECT:EMI WEEKS CLASS DAYS | | NO. OF DAYS PER WEEK CLASS ALLOTED : 05 | | SEMESTER FROM
04/02/2025 TO 17/05/2025 | | | | | | | | NO. OF WEEKS : 15
NOS. | | | | WEEKS | 1ST | THEORY TOPICS | | | | | | 1ST WEEK | 2ND | Introduction to measurement & instumentation | | | | | | | 3RD | Define Accuracy, precision, Errors, Resolutions Sensitivity and tolerance | | | | | | | 4TH | Classification of measuring instruments | | | | | | | | Explain Deflecting, controlling and damping arrangements in indicating type of instruments. | | | | | | | 5TH | Calibration of instruments | | | | | | 2ND WEEK | 1ST | Introduction to analog ammeter & voltmeter | | | | | | | | Describe Construction, principle of operation, errors, ranges merits and demerits of Moving iron | | | | | | | 2ND | type instruments | | | | | | | 3RD | Describe Construction, principle of operation, errors, ranges merits and demerits of Moving iron type instruments | | | | | | | 4TH | Describe Construction, principle of operation, errors, ranges merits and demerits of Moving iron type instruments | | | | | | | 5TH | Describe Construction, principle of operation, errors, ranges merits of Permanent Magnet Moving coil type instruments | | | | | | 3RD WEEK | 1ST | Describe Construction, principle of operation, errors, ranges merits of Permanent Magnet Moving coil type instruments | | | | | | | 2ND | Describe Construction, principle of operation, errors, ranges merits of Permanent Magnet Moving coil type instruments | | | | | | | 3RD | Describe Construction, principle of operation, errors, ranges merits and demerits of Dynamometer type instruments | | | | | | | | Describe Construction, principle of operation, errors, ranges merits and demerits of Dynamometer | | | | | | | 4TH | type instruments | | | | | | | CTI) | Describe Construction, principle of operation, errors, ranges merits and demerits of Dynamome | | | | | | | 5TH | type instruments | | | | | | 4TH WEEK | 1ST | Describe Construction, principle of operation, errors, ranges merits and demerits of Rectifier type instruments | | | | | | | | Describe Construction, principle of operation, errors, ranges merits and demerits of Rectif | | | | | | | 2ND | instruments | | | | | | | | Describe Construction, principle of operation, errors, ranges merits and demerits of Induction type | | | | | | | 3RD | instruments | | | | | | | 4TH | | struction, principle of operation, errors, ranges mer | its and demerits of Induction type | | | | | 5TH | instruments Extend the range of instruments by use of shunts and Multipliers | | | | | | 5TH WEEK | 1ST | Extend the range of instruments by use of shunts and Multipliers | | | | | | | 2ND | Solve Numerical | | | | | | | 3RD | Solve Numerical | | | | | | | 4TH | Describe Construction, principle of working of Dynamometer type wattmeter. (LPF type) | | | | | | | 5TH | Describe Construction, principle of working of Dynamometer type wattmeter. (UPF type) | | | | | | | 1ST | Describe Con | struction, principle of working of Dynamometer typ | e wattmeter. (LPF and UPF type) | | | | 6TH WEEK | 2ND | The Errors in Dynamometer type wattmeter and methods of their correction | | | | | | | 3RD | The Errors in Dynamometer type wattmeter and methods of their correction | | | | | | 5TH | Discuss Induction type watt meters | | | |------------------------|--|--|--| | 4 | | | | | 1ST | mouction type was | | | | 2ND | TO ENERGYMETERS | | | | 3RD | Single Phase Induction type Energy meters – construction Single Phase Induction type Energy meters – construction | | | | | Single Phase Induction type Energy meters working principle Single Phase Induction type Energy meters working principle | | | | | Single Phase Induction type Energy meters and their compensation & adjustments Single Phase Induction type Energy meters their compensation & adjustments | | | | | Single Phase Induction type Energy meters and their compensation & adjustments Testing of Energy Meters | | | | 2ND | Testing of Energy Meters Tosting of Energy Meters | | | | | Testing of Energy Meters | | | | | Measurement of speed ,frequency & powerfactor | | | | | restricting types and working principles | | | | 51H | Principle of operation and construction of Mechanical resonance Type frequency meters | | | | 1ST | Principle of operation and construction of state | | | | 2ND | Principle of operation and construction of Electrical resonance Type frequency meters | | | | 2140 | Principle of operation and working of Dynamometer type single phase power factor meters | | | | 3RD | | | | | | Principle of operation and working of Dynamometer type three phase power factor meters. Principle of operation and working of Dynamometer type three phase power factor meters. | | | | 4TH | Principle of operation and working of Dynamometer type single phase and three phase power factor meters | | | | 5TH | Measurement of resistance, inductance and capacitance | | | | 1ST | Classification of resistance | | | | 2ND | Measurement of low resistance by potentiometer method | | | | 3RD | Measurement of medium resistance by wheat Stone bridge method | | | | 4TH | Measurement of high resistance by loss of charge method | | | | 5TH | Construction, principle of operations of Earth tester for earth resistance measurement | | | | 1ST | Construction, principle of operations of Megger for insulation resistance measurement | | | | 2ND | Construction and principles of Multimeter. (Analog) | | | | 3RD | Construction and principles of Multimeter. (Digital) | | | | 4TH | Measurement of inductance by Maxewell's Bridge method | | | | 5TH | Measurement of capacitance by Schering Bridge method | | | | 1ST | Introduction to sensor and transducer | | | | 2ND | Define Transducer, sensing element or detector element and transduction elements | | | | 3RD | Classify transducer. Give examples of various class of transducer | | | | | Resistive transducer, Linear and angular motion potentiometer | | | | | Thermistor and Resistance thermometers | | | | | Wire Resistance Strain Gauges. | | | | | Principle of linear variable differential Transformer (LVDT) | | | | Maria Company | Uses of LVDT | | | | | General principle of capacitive transducer | | | | | weighte area capacitive transducer | | | | | Change in distance between plate capacitive transducer | | | | | Diozo electric Transducer | | | | Activity of the second | Hall Effect Transducer with their applications | | | | | a :!!escape's introduction | | | | | a solution of operation of Cathode Ray Tube | | | | Charles Control | Cothodo Ray Tuuc | | | | 131 | Principle of operation of Oscilloscope (with help of block diagram) Principle of operation of Oscilloscope (with help of block diagram) | | | | | 4TH 5TH 1ST 2ND 3RD 4TH 5TH 1ST 2ND | | | | 15TH WEEK | 3RD | Principle of | |-----------|-----|--| | | 4TH | Principle of operation of Oscilloscope (with help of block diagram) Measurement of DC Voltage C | | | | | | | | Measurement of AC Voltage, current, phase & frequency | (GF.EIECL)